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Abstract. We show that non-local elastic effects in high-T, superconductors strongly modify 
the range of translational and orientational order in a pinned flux state. Decoration experi- 
ments at low fields and temperatures should therefore be interpreted using non-local elas- 
ticity theory Fitting correlation lengths determined this way to the datagives an estimate of 
the pinningstrength. At higher fields the local theory isva1id;with thisestimate of the pinning 
strength the correlation length is at least IO'lattice spacings, suggesting that a lattice phase 
will be observed at low temperatures, where our theory is valid. 

The discovery of high-T, superconducting materials has stimulated renewed interest 
in the properties of flux-line lattices (EL) [l]. These materials have relatively short 
superconducting correlation lengths E - 10 A, while magnetic penetration depths A 
are a hundred times larger. Thus, the Ginzburg-Landau parameter K = A / E  is very 
large. This feature has been shown by several authors [2-4] to make considerations of 
non-local elasticity [5] important, considerably softening the FLL. The effect of such 
intrinsic softening may have been seen in decoration experiments [6] .  In particular, 
there are predictions that the melting temperature of the FLL can be suppressed well 
below the mean-field Hc2(T) phase boundary [2-4]. The large mass anisotropy in these 
layered materials also plays an important role in the suppression of the melting tem- 
perature [2]. 

In [2] and [4] the effects of pinning of the flux lines (ns) by random impurities were 
not considered, but as shown by Larkin and Ovchinnikov (LO) [7], the random forces 
due to arbitrarily weak pinning destroys the long-range translational order of the FLL. 
Short-range order persists up to some correlation lengths E ,  and E,,,  along directions 
perpendicular and parallel to the applied field, respectively. (We consider only the 
geometry where B 11 e.) On length scales greater than 511 and 5,  the lattice description 
breaks down, and it has been argued [SI that a vortex glass phase, with long-range 
orientational order [9]  exists. Recently, magnetic decoration experiments [lo] have 
been performed on high-quality single crystals of Bi,,Sr2Cao.8Cu20, (BSCCO) at low 
fields and temperatures. These experiments find translational correlation lengths of a 

11 Permanent address: Department of Physics, Brown University, Providence, RI 02912, USA. 

0953-8984/91/387527 t 06 $03.50 @ 1991 IOP Publishing Ltd 7527 



7528 Letter to the Editor 

few lattice constants and orientational correlations of at least several tens of lattice 
constants. 

from non-local elasticity theory for an isotropic 3D 
material at T =  0. (A mistake in the calculation was subsequently corrected by Wor- 
denweber and Kes, and also by Brandt [ l l ] . )  In this paper we extend the results of [7] 
to include both thermal fluctuations and mass anisotropy. We show that correlation 
lengths arising from non-local elastic terms should be used to discuss the data from the 
decoration experiments rather than correlation lengths detmnined from local theory 
[12]. This is a surprising result, considering that the vortex separation in decoration 
experiments is typically -Aob, the in-plane magnetic penetration depth. The origin of 
this result lies in the extreme mass anisotropy of the materials. 

The amplitude of the correlation function is reduced by thermal diffuse scattering. 
This effect is negligible at the temperatures and fields at which the decoration experi- 
ments are carried out. Fitting the non-local correlation lengths to the decoration data 
givesavalue for thestrengthofthepinning, which allowsus to predict correlation lengths 
up to fields Ho - 4(M/M,)Q0/dz, the limit of validity of 3D elasticity theory. Here M ,  
and Mare quasiparticle masses in the ab-plane and along the f-axis respectively, Qo = 
2.07 X lo-’ GcmZ is the quantum of flux and d is the interplanar spacing; for Bscco 
Ho = 1 T. At fields 3 0.25 T, much larger than those applied in the decoration experi- 
ments, we find that the local correlation lengths are smaller than the corresponding non- 
local ones. Thus, in this field regime, local elasticity theory is applicable. However, 
fitting the decoration data to the nonilocal theory yields local correlation lengths which 
are substantially larger than lengths obtained by fitting the data to local theory. We then 
show that the asymptotic value of the orientational correlation function is strongly 
modified by non-local elasticity. 

Before we present results, we emphasize that at fields - 60 G or larger, topological 
defects are practically non-existent in the FLL in well-annealed samples [lo, 131. Under 
such circumstances, we expect a treatment in which elastic restoring forces are assumed 
to dominate plastic deformation forces to be well suited. For lower fields it is clear 
that topological defects of the RL proliferate, and an inclusion of such defects (e.g. 
dislocations, disclinations, dislocation loops) into the description is necessary. This is 
outside the scope of the present letter, which will analyse the simpler situation presented 
by the field region B 3 60 G. Finally, a note of caution: all comparisons made between 
theory and experiment here assume that the decoration experiments are carried out on 
FLLS that are in thermal equilibrium, and not some frozen-in non-equilibrium con- 
figuration. 

The details are as follows. We determine translational correlation lengths from the 
correlation function g(r) = [(exp(iG. (u(r)  - u(O)))],,. Here, G is a reciprocal lattice 
vectorofthe triangular=, and the?Ddisplacementfield, u,isameasure ofthedistortion 
of the FLL from its Abrikosov ground state. The angular brackets denote a thermal 
average over the Hamiltonian 

H = kx uj(-k)Qu(A)uj(k) - 2 u(k) . f ( - k )  

LO [7] determined EL and 

k X 

X Qij(k) = cL(k)k,k, + 6,j[c.& + ~ ~ ( k ) k : ] .  (1) 

Here, Qii(k) is the elastic matrix, cas, cL(k) and cU(k) are the shear-, bulk-, and tilt- 
moduli. respectively [Z], k: = k: + k; ,  and (i, j) € ( x ,  y). Note that the dispersion of 
cL(k) and cU(k) is important, even at very low inductions in anisotropic superconductors 
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[23], (see (3)). The square brackets [ indicate a quenched statistical average over the 
randompinningforceflk), which isassumed to have a Gaussianprobability distribution. 
At zero temperature the variance of the pinning force, W = n p ( f i ) ,  can be taken to have 
the form W = Wb(1 - 6)'. Here b = B/B,2, and Bcz is the upper critical field. At any 
finite temperature will be field and temperature dependent [14-16]. A Gaussian 
probability distribution for the pinning force allows an exact evaluation ofg(r), which 
can be written as a product, g(r) = g&) gw(r). Here, g7(r) is the thermal correlation 
function in the absence of pinning, and gw(r) is the correlation function due to pinning 
at T = 0. At large distances, gT is given by the Debye-Waller factor exp( -Gz(u2)/2), 
where (U'} is given by (3.2) of [2]. The function gw(r) is given by 

g w ( r ) = e x p ( - w z ( l  k - c o s k . r ) ~ ~ ~ ~ ~ ( k ) ~ , )  

Aii(k) = P;/[c6,k: + c,(k)k:]'. (2) 
In (2), PF = 6, - k,k,/k:, and we have ignored a term involving longitudinal Ruc- 
tuations of the FLL, since cL(0) S cG6, and the dominant contributions to the k-sum in (2) 
come from small k.  The exponent in (2) is essentially the LO-correlation function [7] 
((u(r) - U{O))~). With the non-local elastic moduli for the FLL in a uniaxial material 
derived in [2],gw(r) can be evaluated to givet 

gw(r )  = e ~ p { [ - G ~ W / 1 6 ~ c ~ ~ c ~ ( O ) ] C f ~ ( r )  - f"'(r))}  

f'(r) = [r: + c ~ z ~ / c ~ ( o ) ~ ' / ~  

f" '(r)  = (r/4k,) In11 + k$r? + ( ~ ~ / c ~ ( O ) ) ( k ~ ~ / k ~ ) r ~ ~ ~ ] ,  (3) 
In (3), we have defined r = (M2/M) 'D.  Note the large prefactor of the logarithm in (3), 
making non-local elasticity important euen at uery /ow inductions. This has its origin 
in the magnetic field components parallel to the ab-planes, with very long range, 
which originate in the tilted vortices [3]. In (3), c6 = (Bz2/4z)b(l - b)*/8~'  and 
c,(O) = B2/4z are localelastic moduli and kBz is the radius of the circularized Brillouin 
ZoneoftheFLL. We have& = (2b)''2/E, kh = (1 - b)'/'/Aab, andC = ( 2 ~ ~ / ( 3 ) ' ~ ~ ) ' ~ ~ k ~ ,  
[l-41. As g d r )  decays to zero, the decay of the full correlation function g(r) will be 
determined by gdr )  provided that the Debye-Waller factor is sufficiently large, say 
- C I D ,  i.e. (U'@)) = 0.04~'. This is the case [2J at the temperatures T =  4 K and fields 
H = 100 G at which the decoration experiments [lo] are carried out. 

Locd elasticity is recovered when kh 4 m; gw(r) will decay exponentially with cor- 
relation lengths E:""' = 1 6 z ~ ~ ' c ~ ~ ( O ) / G ~ W ,  and Eh""' = 16zcMcM(0)/GZW. The non- 
locd terms in the elastic moduli of the FLL lead to the logarithm in (3); the importance 
of this term was pointed out in [ll]. We now examine its role in BSCCO, where K = 100 
and Tz = 3600. Comparingf' andp ' in  (3), we find that in the transverse direction the 
non-local term dominates if kBzr, < (2b/(l - b)) ' /ZrK In kBzr,. Taking BCz - 500 kG, 
and r = 60 [17] for BSCCO, we find that at fields - 100 G, this is the case if kBzr, < 500, 
or r l  < 100flm. This distance is much larger than measured correlation lengths [lo] 

t TheLOwrrelation iunction((u(r) - u(0))')ioraniEoiropicsuperconductor wasgeneralizedslightyin [ I l l  
byincludinga Labuschparameter in theelastic matrix @,,(R).  This parameter describes theelasticinteraction 
ora homogeneously shifted FLL with the pins. In our equilibrium statistical mechanical treatment, which we 
believe adequately describes the experimental systems we claim to consider, no such parameter can be 
generated, since the system miaim iranslarionalinoorinnce after one has averaged over the random disorder. 
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(and is arrived at with a lattice spacing of 1.4pm at 20G [18], decreasing with field 
as -l/bi/'). 

Defining correlation lengths arising from the non-local terms in gw(r) by retaining 
the logarithm only, and equating the resulting exponent to - 1, we obtain 

EYlma1/a = 0.26exp(l.9 X 10" b'"(1 - b)3'*B$g/r~4W) 
~~ 

g p l O c a l / a  = [1,6/r(i - b ) ~ Q ] ( ~ y + ~ ~ a ~ / ~ ) 2 ,  (4) 

As long as the non-local correlation lengths are smaller than their local counterparts, 
the range of g(r) will be determined by (4) although the actual functional form will be a 
power law rather than an exponential. Fitting (4) at 100 G to threelatticespacings [lo], 
we determine the strength of the pinning directly from the decoration experiments. 
We find W = 2.84 X loF3 N2 I I - ~ .  Thus, for weak fields b 4 1, E","".''"l/u = 
0.26exp(1.72 X 102b1/2). This yields correlation lengths of 1.45, 3 and 5.11 lattice 
spacings at fields of 50 G, 100 G and 1,50 G, respectively. By comparison, at this value 
of W, the correlation length deduced from the local theory, ,Ioca1/a = 0.38 x 10%. is 
much larger, -100, in this field range. Having determined W, we can also predict the 
power law associated with the decay of&) r-". We find CY = 0.58 X lo-* b-'/'. In this 
field range the aspect ratio of a translationally ordered domain E,,/EL = l.fj/[r(l- b)1/2] 
(E,j'u), grows exponentially with bl". 

At fields larger than 100 G, the non-local correlation length initially grows expo- 
nentially with b1i2. However, as a result of this rapid initial growth, there will be a wide 
range of fields for which E?' < &"'Ioca', and at these fields the local theory will det- 
ermine the range of g(r). From (4), we find that this is the case for B 2 0.25T. In this 
field range the perpendicular correlation length E y i / a  =0.71 X lO"b(1 - b) 
B : 2 5 / ~ 3 w ,  which is lo3 lattice spacings, 2 X 102pm, at 0.25 T, grows slowly with mag- 
netic field, suggesting that a lattice phase will be observed over a wide range of fields. 
Had we fitted the low-field decoration data to the local correlation length, the resulting 
value of would have been two orders of magnitude smaller. These conclusions hold 
at fields =Z Ho and at temperatures less than a few degrees. 

At lower temperatures, 4 K, the effect of g, becomes important at fields of the 
order of 10 kG. At higher fields than this we extract correlation lengths by equating 
gw(r) to e-' divided by the Debye-Waller factor. When the Debye-Waller factor is 
approximately one-half, the local correlation length will be reduced by at least an order 
of magnitude, whereas the correlation length deduced from the non-local theory would 
be only reduced by a factor of two. Thus, our zero-temperature estimate of the field 
range in which local theory is applicable should remain essentially unchanged. We 
expect, then, a perpendicular correlation length of about lo3 lattice~spacings, cor- 
responding to about 100 pm at fields of order 10 kG. At this field strength the parallel 
correlation length, including the effect of g r  will be of order 0.01 cm, which by far 
exceeds the typical sample thickness. 

The orientational order of the FLL was considered recently by Chudnovsky [12]. 
Using local elasticity theory to study the orientational correlation function 
gb(r) = [(exp[6i(O(r) - O(0))])]Av at Iarge r, he showed that (in the case discussed here, 
of a pinning force coupled directly to the  displacement) the lattice retains long-range 
orientationalorder. A random fieldcoupled directly to the bond angle O(r) will of course 
destroy the orientational order at sufficiently large distances [12, 191. This general 
conclusion is not affected by the non-local elastic effects, but the detailed form of the 
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orientational correlation function is. At long distances the correlation function at T = 0 
takes the form 
g6(r) = exd-11.3 x - b)3/z~:2c][1 - ((1 - b)E/rxbrL)]}. (5)  
Given the value of found here, at B = 100 G,  g6(r) decays very rapidly over a distance 
of the order of 10-2a, to e-'. Here again we see the importance of non-local elasticity, 
which introduces factors of K and r into the exponent of the asymptotic value of gb(r) 
and, inaddition,modifiesthe fielddependence. Theneteffect is to enhance theexponent 
by a factor of -lo2 relative to the local theory. By contrast, non-local effects do not 
modify the rate of decay of the correlation function to its asymptotic value. For B = 60- 
100 G, the magnitude and b-dependence of g6(r) agree well with experiments on well- 
annealed samples. 

In summary, we have considered in detail the translational and orientational cor- 
relations of flux lines in a weakly pinned FLL using a non-local elastic description of the 
FLL. Our prediction of a power-law decay of translational correlations is in consistent 
agreement with low field (60-100 G) decoration experiments on well-annealed samples 
(although topological defects should be included at even lower fields). Whether or not 
the decoration data in this field regime really reveal exponential or power-law decay for 
the translational correlations remains an open question. More experimental work on a 
wider field range is needed to settle this [13]. Our predictions (4) for the correlation 
lengths at higher fields, outside the field regime where decoration experiments are 
feasible, can be tested by small-angle neutron scattering ( S A N S ) .  Apromisingcompound 
for this purpose seems to be NbSez, which has large values of Kand M,/M, and for which 
large enough high-quality crystals can be obtained to provide good signal intensities. 

Our interest in this work was stimulated by conversations with D R Nelson. We are also 
grateful to E H Brandt, P L Gammel, D G Grier, D A Huse, H J Jensen, P H Kes 
and C A Murray for helpful communications. AH thanks the faculty of the physics 
department at UCSD for their hospitality during the time this work wascarried out. The 
research of AH was supported by NSF under DMR-900 8239. 
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